Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening.

نویسندگان

  • Violeta Serra
  • Thomas von Zglinicki
  • Mario Lorenz
  • Gabriele Saretzki
چکیده

There is good evidence that telomere shortening acts as a biological clock in human fibroblasts, limiting the number of population doublings a culture can achieve. Oxidative stress also limits the growth potential of human cells, and recent data show that the effect of mild oxidative stress is mediated by a stress-related increased rate of telomere shortening. Thus, fibroblast strains have donor-specific antioxidant defense, telomere shortening rate, and growth potential. We used low-density gene expression array analysis of fibroblast strains with different antioxidant potentials and telomere shortening rates to identify gene products responsible for these differences. Extracellular superoxide dismutase was identified as the strongest candidate, a correlation that was confirmed by Northern blotting. Over-expression of this gene in human fibroblasts with low antioxidant capacity increased total cellular superoxide dismutase activity, decreased the intracellular peroxide content, slowed the telomere shortening rate, and elongated the life span of these cells under normoxia and hyperoxia. These results identify extracellular superoxide dismutase as an important antioxidant gene product in human fibroblasts, confirm the causal role of oxidative stress for telomere shortening, and strongly suggest that the senescence-like arrest under mild oxidative stress is telomere-driven.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein restriction in lactation confers nephroprotective effects in the male rat and is associated with increased antioxidant expression.

Telomere shortening has been implicated in the aging process and various age-associated disorders, including renal disease. Moreover, oxidative stress has been identified as an initiator of accelerated telomere shortening. We have shown previously that maternal protein restriction during lactation leads to reduced renal telomere shortening, reduced albuminuria, and increased longevity in rats. ...

متن کامل

Mitochondrial Dysfunction Accounts for the Stochastic Heterogeneity in Telomere-Dependent Senescence

Aging is an inherently stochastic process, and its hallmark is heterogeneity between organisms, cell types, and clonal populations, even in identical environments. The replicative lifespan of primary human cells is telomere dependent; however, its heterogeneity is not understood. We show that mitochondrial superoxide production increases with replicative age in human fibroblasts despite an adap...

متن کامل

Normal telomere erosion rates at the single cell level in Werner syndrome fibroblast cells.

The aim of this study was to investigate whether the accelerated replicative senescence seen in Werner syndrome (WS) fibroblasts is due to accelerated telomere loss per cell division. Using single telomere length analysis (STELA) we show that the mean rate of telomere shortening in WS bulk cultures ranges between that of normal fibroblasts [99 bp/population doubling (PD)] and four times that of...

متن کامل

Antioxidant therapy attenuates myocardial telomerase activity reduction in superoxide dismutase-deficient mice.

Oxidative stress plays a pathological role in the development of heart failure. This study examined telomere biology in heart/muscle-specific manganese superoxide dismutase-deficient mice (H/M-SOD2(-/-)), which develop progressive congestive heart failure and exhibit pathology typical of dilated cardiomyopathy. EUK-8 (25mg/kg/day), a superoxide dismutase and catalase mimetic, was administered t...

متن کامل

Glutathione peroxidase 3 localizes to the epithelial lining fluid and the extracellular matrix in interstitial lung disease

Aberrant antioxidant activity and excessive deposition of extracellular matrix (ECM) are hallmarks of interstitial lung diseases (ILD). It is known that oxidative stress alters the ECM, but extracellular antioxidant defence mechanisms in ILD are incompletely understood. Here, we extracted abundance and detergent solubility of extracellular antioxidant enzymes from a proteomic dataset of bleomyc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 9  شماره 

صفحات  -

تاریخ انتشار 2003